
18.152 Midterm exam
due April 6th 9:30 am

1. Preliminary

Given a set A ⊂ Rn and a function u : A→ R, we say that

(a) u ∈ C(A) if u is continuous in A,
(b) u ∈ Dk(A) if u is k-times differentiable in A,
(c) u ∈ Ck(A) if u is k-times differentiable and its k-th order derivatives

are continuous in A,
(d) u ∈ C∞(A) if u is smooth (∞-many times differentiable) in A,
(e) u ∈ C0,1(A) if u is locally Lipschitz continuous in A, (Definition 1)
(f) u ∈ Ck,1(A) if u is k-times differentiable and its k-th order deriva-

tives are locally Lipschitz continuous in A.

Definition 1. We say that u : A→ R is Lipschitz continuous in A if there
exists some constant CA such that

(1) |u(x)− u(y)| ≤ CA|x− y|,

holds for all x, y ∈ A.
We say that u : A → R is locally Lipschitz continuous in A if given any

compact subset K ⊂ A, u is Lipschitz continuous in K.

We recall a version of the integration by parts.

Theorem 2 (Integration by parts). A bounded open set Ω ⊂ Rn has the
smooth boundary ∂Ω. Then,

(2)

∫
Ω
ui(x)dx =

∫
∂Ω
u(σ)νi(σ)dσ,

where νi = 〈ν, ei〉.

Proof. We define V : Ω → Rn by V (x) = u(x)ei. Then, the divergence
theorem implies

(3)

∫
Ω
ui(x)dx =

∫
Ω

divV (x)dx =

∫
∂Ω
〈V (σ), ν(σ)〉dσ =

∫
∂Ω
u(σ)νi(σ)dσ.
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2. Laplace equation

Let Ω = B1(0) ⊂ R2. Given f ∈ C0,1(Ω), we define

(4) u(x) = −
∫

Ω
G(x, y)f(y)dy.

Problem 1 (4 points). Show that

(5)

∫
Ω
G(x, y)dy =

1

2

(
1− |x|2

)
,

holds for |x| ≤ 1.

Problem 2 (4 points). Show that the following holds in Ω,

(6) |u(x)| ≤ 1
2

(
1− |x|2

)
sup

Ω
|f |.

In particular, u = 0 on ∂Ω.

Theorem 3. u is differentiable in Ω. Moreover, for each i = 1, 2, ∂
∂xi
u(x) =

vi(x) holds in Ω, where vi(x) is given by

(7) vi(x) = −
∫

Ω

∂
∂xi
G(x, y)f(y)dy.

Proof. We choose some function ρ ∈ C1(R) such that 0 ≤ ρ ≤ 1, 0 ≤ ρ′ ≤ 2,
ρ(t) ≤ 1 for t ≤ 1 and ρ(t) = 0 for t ≥ 2. Then, given ε > 0 we define

(8) wε(x) = −
∫

Ω
[Φ(x− y)ρε + ϕ(x, y)] f(y)dy.

where ρε = ρ(|x− y|/ε). If B2ε(x) ⊂ Ω then wε ∈ C1(Ω) and

|u− wε| ≤
∫
B2ε(x)

Φ(x− y)|1− ρε||f(y)|dy ≤ Cε2(1 + | log ε|) sup |f |,(9)

and

|vi − ∂
∂xi
wε| ≤

∫
B2ε(x)

∣∣∣ ∂∂xiΦ(x− y)(1− ρε)
∣∣∣ |f(y)|dy(10)

≤ sup |f |
∫
B2ε(x)

| ∂∂xiΦ(x− y)|+ 2
ε |Φ(x− y)|dy(11)

≤ Cε(1 + | log ε|) sup |f |.(12)

Hence, in any compact subset in Ω, wε and ∂
∂xi

uniformly converge to u and

vi. Thus u is differentiable and ∂
∂xi
u = vi. �



3

Problem 3 (2 point). Verify u ∈ C(Ω) by using Problem 2 and Theorem 3.

Given i, j ∈ {1, 2}, we define vij(x) by

vij(x) = −
∫

Ω

(
∂2

∂xi∂xj
G(x, y)

)
[f(y)− f(x)]dy(13)

+ f(x)

∫
∂Ω

(
∂
∂xi
G(x, y)

)
νj(σ)dσ,(14)

where νj(σ) = 〈ν(σ), ej〉 = 〈σ, ej〉 = σj .

Problem 4 (6 points). Given i, j ∈ {1, 2}, x ∈ Ω and ε > 0 such that
B2ε(x) ⊂ Ω, we define

(15) wε(x) =

∫
Ω

[
ϕ(x, y) + ρε(x, y) ∂

∂xi
Φ(x− y)

]
f(y)

where ρε is given in the proof of Theorem 3. Then, show that there exists
some constant C such that

|ui(x)− wε| ≤ Cε, |vij(x)− ∂
∂xj

wε| ≤ Cε.(16)

Hint 1 : Since f ∈ C0,1(Ω), if Bδ(x) ⊂ Ω then there exists some
C0 such that

(17) |f(x1)− f(x2)| ≤ C0|x1 − x2|,
holds for x1, x2 ∈ Bδ(x).

Hint 2 : You may use Theorem 2.

The result of Problem 4 implies

Theorem 4. u ∈ D2(Ω) and ∂2

∂xi∂xj
u = vij holds in Ω.

Problem 5 (2 point). Show that ∆u = f holds in Ω.

Problem 6 (2 point). Show that given g ∈ C2,1(Ω) and f ∈ C0,1(Ω), there
exists a unique u ∈ D2(Ω)∩C(Ω) satisfying ∆u = f in Ω and u = g on ∂Ω.

Remark 5. If f ∈ C0,1(Ω), then we have u ∈ C2,1(Ω). The proof is given
in [Gilbarg-Trudinger ] section 4.
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3. Liouville theory

Problem 7 (6 point). Suppose that a positive function u ∈ C∞(R2 \ {0})
is harmonic. Show that u is a constant function.

Problem 8 (2 point). Find a non-constant positive harmonic function u ∈
C∞(Rn \ {0}).

Problem 9 (6 point). Suppose that a harmonic function u ∈ C∞(R2
+)

satisfies |u(x)| ≤ x2, where R2 = {(x1, x2) : x2 > 0}. Show that u(x) = cx2

for some constant c ∈ [−1, 1].

Problem 10 (6 point). Suppose that a smooth solution u : Rn × R→ R to
the diffusion equation ut = ∆u + u2 satisfies u(x, t) = u(x + ei, t) for each
i ∈ {1, · · · , n}. Show that u = 0.

4. Maximum principle

Problem 11 (5 point). Let Ω = B1(0) ⊂ R2. Given a positive function
f ∈ C∞(Ω), we suppose that a strictly convex smooth function u ∈ C∞(Ω)
satisfies u = 0 on ∂B1(0) and

(18) det∇2u(x) = f(x),

holds in Ω, where det∇2u = u11u22 − u2
12. Show that

(19) u(x) ≥ −1
2(1− |x|2) sup

y∈Ω

√
f(y),

holds for all x ∈ Ω.

Problem 12 (5 point). Let Ω ⊂ Rn be a bounded open set with smooth
boundary. Suppose that a smooth solution u : QT → R (where QT = Ω ×
(0, T ]) to the heat equation ut = ∆u satisfies the boundary condition u = g

on ∂pQT for some g ∈ C∞(Ω). Show that if g satisfies g ≥ 0 in Ω and g > 0
in ∂Ω, then u(x, t) > 0 holds for t > 0.


