18.152 Midterm exam

due April 6th 9:30 am

1. Preliminary

Given a set $A \subset \mathbb{R}^n$ and a function $u: A \to \mathbb{R}$, we say that

- (a) $u \in C(A)$ if u is continuous in A,
- (b) $u \in D^k(A)$ if u is k-times differentiable in A,
- (c) $u \in C^k(A)$ if u is k-times differentiable and its k-th order derivatives are continuous in A,
- (d) $u \in C^{\infty}(A)$ if u is smooth (∞ -many times differentiable) in A,
- (e) $u \in C^{0,1}(A)$ if u is locally Lipschitz continuous in A, (Definition 1)
- (f) $u \in C^{k,1}(A)$ if u is k-times differentiable and its k-th order derivatives are locally Lipschitz continuous in A.

Definition 1. We say that $u : A \to \mathbb{R}$ is Lipschitz continuous in A if there exists some constant C_A such that

(1)
$$|u(x) - u(y)| \le C_A |x - y|,$$

holds for all $x, y \in A$.

We say that $u : A \to \mathbb{R}$ is locally Lipschitz continuous in A if given any compact subset $K \subset A$, u is Lipschitz continuous in K.

We recall a version of the integration by parts.

Theorem 2 (Integration by parts). A bounded open set $\Omega \subset \mathbb{R}^n$ has the smooth boundary $\partial \Omega$. Then,

(2)
$$\int_{\Omega} u_i(x) dx = \int_{\partial \Omega} u(\sigma) \nu_i(\sigma) d\sigma,$$

where $\nu_i = \langle \nu, e_i \rangle$.

Proof. We define $V : \Omega \to \mathbb{R}^n$ by $V(x) = u(x)e_i$. Then, the divergence theorem implies

(3)
$$\int_{\Omega} u_i(x) dx = \int_{\Omega} \operatorname{div} V(x) dx = \int_{\partial \Omega} \langle V(\sigma), \nu(\sigma) \rangle d\sigma = \int_{\partial \Omega} u(\sigma) \nu_i(\sigma) d\sigma.$$

2. LAPLACE EQUATION

Let
$$\Omega = B_1(0) \subset \mathbb{R}^2$$
. Given $f \in C^{0,1}(\Omega)$, we define
(4) $u(x) = -\int_{\Omega} G(x,y)f(y)dy.$

Problem 1 (4 points). Show that

(5)
$$\int_{\Omega} G(x,y) dy = \frac{1}{2} \left(1 - |x|^2 \right),$$

holds for $|x| \leq 1$.

Problem 2 (4 points). Show that the following holds in $\overline{\Omega}$,

(6)
$$|u(x)| \le \frac{1}{2} \left(1 - |x|^2\right) \sup_{\Omega} |f|.$$

In particular, u = 0 on $\partial \Omega$.

Theorem 3. u is differentiable in Ω . Moreover, for each i = 1, 2, $\frac{\partial}{\partial x_i}u(x) = v_i(x)$ holds in Ω , where $v_i(x)$ is given by

(7)
$$v_i(x) = -\int_{\Omega} \frac{\partial}{\partial x_i} G(x, y) f(y) dy$$

Proof. We choose some function $\rho \in C^1(\mathbb{R})$ such that $0 \le \rho \le 1, 0 \le \rho' \le 2$, $\rho(t) \le 1$ for $t \le 1$ and $\rho(t) = 0$ for $t \ge 2$. Then, given $\epsilon > 0$ we define

(8)
$$w_{\epsilon}(x) = -\int_{\Omega} \left[\Phi(x-y)\rho_{\epsilon} + \varphi(x,y) \right] f(y) dy$$

where $\rho_{\epsilon} = \rho(|x-y|/\epsilon)$. If $B_{2\epsilon}(x) \subset \Omega$ then $w_{\epsilon} \in C^{1}(\Omega)$ and (9) $|u-w_{\epsilon}| \leq \int_{B_{2\epsilon}(x)} \Phi(x-y)|1-\rho_{\epsilon}||f(y)|dy \leq C\epsilon^{2}(1+|\log\epsilon|) \sup |f|,$

and

(10)
$$|v_i - \frac{\partial}{\partial x_i} w_{\epsilon}| \leq \int_{B_{2\epsilon}(x)} \left| \frac{\partial}{\partial x_i} \Phi(x - y)(1 - \rho_{\epsilon}) \right| |f(y)| dy$$

(11)
$$\leq \sup |f| \int_{B_{2\epsilon}(x)} |\frac{\partial}{\partial x_i} \Phi(x-y)| + \frac{2}{\epsilon} |\Phi(x-y)| dy$$

(12)
$$\leq C\epsilon(1+|\log\epsilon|)\sup|f|.$$

Hence, in any compact subset in Ω , w_{ϵ} and $\frac{\partial}{\partial x_i}$ uniformly converge to u and v_i . Thus u is differentiable and $\frac{\partial}{\partial x_i}u = v_i$.

Problem 3 (2 point). Verify $u \in C(\overline{\Omega})$ by using Problem 2 and Theorem 3.

Given $i, j \in \{1, 2\}$, we define $v_{ij}(x)$ by

(13)
$$v_{ij}(x) = -\int_{\Omega} \left(\frac{\partial^2}{\partial x_i \partial x_j} G(x, y)\right) [f(y) - f(x)] dy$$

(14)
$$+ f(x) \int_{\partial \Omega} \left(\frac{\partial}{\partial x_i} G(x, y) \right) \nu_j(\sigma) d\sigma,$$

where $\nu_j(\sigma) = \langle \nu(\sigma), e_j \rangle = \langle \sigma, e_j \rangle = \sigma_j.$

Problem 4 (6 points). Given $i, j \in \{1, 2\}$, $x \in \Omega$ and $\epsilon > 0$ such that $B_{2\epsilon}(x) \subset \Omega$, we define

(15)
$$w_{\epsilon}(x) = \int_{\Omega} \left[\varphi(x, y) + \rho_{\epsilon}(x, y) \frac{\partial}{\partial x_{i}} \Phi(x - y) \right] f(y)$$

where ρ_{ϵ} is given in the proof of Theorem 3. Then, show that there exists some constant C such that

(16)
$$|u_i(x) - w_\epsilon| \le C\epsilon,$$
 $|v_{ij}(x) - \frac{\partial}{\partial x_j} w_\epsilon| \le C\epsilon.$

Hint 1 : Since $f\in C^{0,1}(\Omega),$ if $B_{\delta}(x)\subset \Omega$ then there exists some C_0 such that

(17) $|f(x_1) - f(x_2)| \le C_0 |x_1 - x_2|,$

HOLDS FOR $x_1, x_2 \in B_{\delta}(x)$.

HINT 2 : YOU MAY USE THEOREM 2.

The result of Problem 4 implies

Theorem 4. $u \in D^2(\Omega)$ and $\frac{\partial^2}{\partial x_i \partial x_j} u = v_{ij}$ holds in Ω .

Problem 5 (2 point). Show that $\Delta u = f$ holds in Ω .

Problem 6 (2 point). Show that given $g \in C^{2,1}(\overline{\Omega})$ and $f \in C^{0,1}(\Omega)$, there exists a unique $u \in D^2(\Omega) \cap C(\overline{\Omega})$ satisfying $\Delta u = f$ in Ω and u = g on $\partial \Omega$.

Remark 5. If $f \in C^{0,1}(\overline{\Omega})$, then we have $u \in C^{2,1}(\overline{\Omega})$. The proof is given in [Gilbarg-Trudinger] section 4.

3. LIOUVILLE THEORY

Problem 7 (6 point). Suppose that a positive function $u \in C^{\infty}(\mathbb{R}^2 \setminus \{0\})$ is harmonic. Show that u is a constant function.

Problem 8 (2 point). Find a non-constant positive harmonic function $u \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$.

Problem 9 (6 point). Suppose that a harmonic function $u \in C^{\infty}(\mathbb{R}^2_+)$ satisfies $|u(x)| \leq x_2$, where $\mathbb{R}^2 = \{(x_1, x_2) : x_2 > 0\}$. Show that $u(x) = cx_2$ for some constant $c \in [-1, 1]$.

Problem 10 (6 point). Suppose that a smooth solution $u : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ to the diffusion equation $u_t = \Delta u + u^2$ satisfies $u(x,t) = u(x + e_i,t)$ for each $i \in \{1, \dots, n\}$. Show that u = 0.

4. MAXIMUM PRINCIPLE

Problem 11 (5 point). Let $\Omega = B_1(0) \subset \mathbb{R}^2$. Given a positive function $f \in C^{\infty}(\overline{\Omega})$, we suppose that a strictly convex smooth function $u \in C^{\infty}(\overline{\Omega})$ satisfies u = 0 on $\partial B_1(0)$ and

(18)
$$\det \nabla^2 u(x) = f(x),$$

holds in $\overline{\Omega}$, where det $\nabla^2 u = u_{11}u_{22} - u_{12}^2$. Show that

(19)
$$u(x) \ge -\frac{1}{2}(1-|x|^2) \sup_{y \in \Omega} \sqrt{f(y)},$$

holds for all $x \in \Omega$.

Problem 12 (5 point). Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with smooth boundary. Suppose that a smooth solution $u : \overline{Q}_T \to \mathbb{R}$ (where $Q_T = \Omega \times (0,T]$) to the heat equation $u_t = \Delta u$ satisfies the boundary condition u = gon $\partial_p Q_T$ for some $g \in C^{\infty}(\overline{\Omega})$. Show that if g satisfies $g \ge 0$ in Ω and g > 0in $\partial\Omega$, then u(x,t) > 0 holds for t > 0.